STATE OF ILLINOIS
WILLIAM G STRATTON, GOVERNOR
DEPARTMENT OF

DEPARTMENT OF REGISTRATION AND EDUCATION VERA M. BINKS, DIRECTOR SPRINGFIELD

BOARD OF NATURAL RESOURCES AND CONSERVATION VERA M. BINKS. CHAIRMAN GEOLOGY . W. H. NEWHOUSE CHEMISTRY . ROCER ADAMS

ENGINEERING - ROBERT M ANDERSON BIOLOGY - A E EMERSON FORESTRY - LEWIS M TIFFANY UNIVERSITY OF ILLINOIS REPRESENTING THE PRESIDENT - W. L. EVERITT

SOUTHERN ILLINOIS UNIVERSITY PRESIDENT - DELYTE W MORRIS

REFERENCE 4
SITE NAME Caravelle Wood Products

SITE ID 110005 083 332

STATE GEOLOGICAL SURVEY DIVISION

November 22, 1954

JOHN C. FRYE. CHIEF 121 NATURAL RESOURCES BUILDING UNIVERSITY OF ILLINOIS CAMPUS URBANA

GEOLOGIC REPORT ON GROUNDWATER POSSIBILITIES FOR COMMUNITY SUPPLY
NEAR EAST CHICAGO HEIGHTS, COCK COUNTY
SECTION 23, T. 35 N., R. 14 E.

Ву

EPA Region 5 Records Ctr.

299031

John W. Foster, Assistant Geologist Division of Groundwater Geology and Geophysical Exploration

(Prepared in response to the inquiry of Mr. N. N. Ridker, President, Homeland Construction Company, 139 North Clark Street, Chicago 2, Illinois)

Industrial and municipal groundwater supplies in southern Cook County are obtained principally from the Niagaran-Alexandrian dolomite, which directly underlies the unconsolidated surface material, and from the deep Galesville sandstone, below 1600 feet in depth.

Following is a summary log of the geologic formations believed to lie beneath Section 23, T. 35 N., R. 14 E. Formation thicknesses and depths are estimated from drilling data in the area, including the log of Chicago Heights City Well No. 3 located about two miles west of the proposed community development.

System and Formation	Thickness	Depth of Base	Characteristics
Pleistocene System Silt, clay and fine sand	15 -4 0	15 -1 0	Not a possible source of ground-water
Silurian System **Niagaran-Alexandrian dolomite	375 ±	390-425	Contains water- yielding crewices most locations
Ordovician System Maquoketa shale	240 ±	660	Mostly non- water-yielding
Galena-Platteville dolomite	330	990	Few water-yielding crevices
*Glenwood-St. Peter sandstone	160-180	1160	One or more permeable zones
Oneota dolomite	210	1370	Few water-yielding crevices

Cambrian system *Trempealeau dolomite	105	1475	Contains water- yielding openings some locations
Franconia sandstone and dolomite	135	1610	Generally not water yielding
**Ironton-Galesville sandstone	145	1755	Several zones with good perme-ability
Eau Claire sandstone and shale	be	low	Generally not water-yielding

* possibly significant water-yielding beds

We do not have sufficient information on hand to predict the amount of water-yielding crevices that would be found in the Niagaran-Alexandrian dolomite near East Chicago Heights. A number of borings, however, report open crevices yielding groundwater in a zone which would lie at a dpeth of about 230-280 feet. Any drilling in the shallow Niagaran-Alexandrian dolomite for community water supply should penetrate 300-400 feet in order to properly test the suitability of this formation.

^{**} most significant water-yielding beds